
Annotated Schema (1.1) : Mapping Ontologies onto Dataset Schemas (2023/09/28)
Bradley Huffaker and and kc claffy

– Goals –

The goal of this proposal, Annotated Schema (AS), is to provide a limited ontology of
annotations for dataset metadata that inform a prospective user of the classes, properties, and
identifiers contained in the data. The intended audience of this document includes
Data Curators (annotators) who want to create meaningful dataset descriptions, and those
searching for data sets in our catalog.

What is an ontology? Ontologies attempt to create an encompassing data representation,
formal naming, and definition through the abstraction of individuals (objects), classes (sets,
concepts, types of objects, or kinds of things), properties (aspects, attributes, characteristics),
relationships (ways that classes and individuals relate to one another), and restrictions
(formal relationships required for an assertion about the classes or individuals to be true).

Our guiding principle is to be descriptive, not prescriptive. That is, the annotated schema
uses annotations to describe messy real world datasets to aid discovery and high level
understanding. It is not a goal of this annotated schema to force the datasets to match a strict
ontology or schema, but to help researchers make their own decisions about representations
and curation that meet their needs. To ease the burden on the Data Curator, this proposal
includes annotations for classes and properties, but does not include machine-readable
relationships or restrictions. Beyond the scope of this proposal are issues related to
annotating the dataset’s actual data, validating the data, or transforming the data into Resource
Description Framework (RDF) triples.1

Distinguishing our Goals from those of Related Systems.

The goal of projects such as Google’s Knowledge Graph [GKG] and W3C’s OWL’s [OWL]
semantic web is to provide a human and machine-readable data representation, embed data
into that representation, and use that embedded data for machine learning and querying. This
proposal attempts only the first of these goals, with a primary focus on human understanding,

1 Resource Descriptions Framework is a web framework used to represent interconnected data on the
web.

Bradley Huffaker University of California San Diego, US
kc claffy University of California San Diego, US

: bhuffake@beanball:/project/geo-asn-ranking/20230301; vim
This material is based on research sponsored by the National Science Foundation (NSF) grant
OAC-2131987. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of NSF.

This work is licensed under the UC copyright

and a secondary focus on machine readability only of the dataset’s metadata. In contrast, the
RDB to RDF Mapping Language (R2RML) [R2RML] supports automated mapping from
relational datasets to RDF triples. To enable this automation, R2RML requires the Data Curator
to explicitly express all edge cases in a programmatic syntax (or filter those cases before the
transformation). This requirement greatly increases complexity, requiring the Data Curator to
make decisions on behalf of future users of the data. In contrast, our approach prioritizes
informing the consumer so they can make their own choices.

In addition to providing the ability to create informative annotations, our proposed Annotated
Schema will provide useful dataset metadata as structured data such as that consumed by
Google. Google’s Data Search [GO-DATA] supports Schema.org’s Dataset
[SCHEMAORG-DAT] and W3C’s Comma Separated Values on the Web (CSVW) [CSVW].
Schema.org is designed to provide richer annotation of webpage content. In 2013, Google’s
Benjello Jacob proposed adding dataset table header annotations to Schema.org’s vocabulary
on the public-vocabs@w3.org mailing list [PUBLIC-VOCABS]. This thread resulted in a new
proposal: “Describing tables with schema.org” [SCHEMAORG-TAB], which as far as we can tell
failed to get traction. In the following year, Schema.org discussions moved to its GitHub
repository’s issues [SCHEMAORG-IS]. The last issue to reference Benjello Jacob’s original
email thread closed in 2018 [SCHEMAORG-ISS]. This thread introduced a new property to
schema.org’s Dataset class: the variableMeasured property, which describes the type of
variable (e.g., integer, string) represented in a column. But a gap remains: the ability to identify
columns with classes or class properties.

Perhaps as a consequence of this gap, Google added beta support for dataset table
annotations using the CVSW format [GO-DATA-CSVW]. Similar to R2RML, CSVW is designed to
provide CSV data annotations, with a focus on automated machine conversion into RDF triples.
CSVW supports cell and column property annotations, but does not support class annotations.
Our Annotated Schema proposal addresses this limitation with the introduction of Entities.

– Overview of Proposed Annotation Schema –

Our proposal uses Schema.org’s Dataset type and W3C’s CSVW class as a starting point. We
encode the dataset’s metadata in Schema.org’s Dataset class. We encode column header2

information in CSVW format. We add a new Entity class which will encode the mapping between
the columns and classes, properties, and individuals.

– Relational Tables –

We represent each dataset using a set of relational tables. Tables are typically a good
representation of our datasets, and provide a compact human-friendly visual representation.
Real world datasets come in many forms, including APIs and flat files. A single file may contain
multiple tables, and a table can span multiple files. The goal of our Annotated Schema is to
represent each dataset as clearly as possible.

2 Schema.org uses type and class interchangeably; we will use class in this document.

mailto:public-vocabs@w3.org

For illustration purposes, in the remainder of this tutorial document we consider a dataset that
we represent as three tables:

● The top table represents information about the company's employees.
● The bottom right table represents information about the company’s projects,
● The bottom left table shows which employees (identified by their SSN) work on

which project.

Note that the first column of the bottom left table has the column name “name”. This column
name is not shared with a column name in the other two tables. A better choice would have
been “project name”. Real world datasets can have such poor naming choices. Part of our
motivation for this Annotated Schema proposal is to create better annotations (than real world
datasets may have) to improve clarity and facilitate discovery of data sets.

In the dark gray headers are the dataset’s original column headers and table names. The light
gray headers are the first set of annotations. We will incrementally add new colored headers to
these tables as we introduce new layers of annotations.

Table name Employee

titles Cool Company Employees

Column name last_name first_name ssn pay m_last_name m_first_name address home_state

titles last name first name SSN pay manager last
name

manager first
name address home state

example Smith Tom 555-555-555
5

90K Sue Mary 888 Cats
Str

San Diego

CA

Table 1.a: Employee Table

Table name Project/Employee Project

titles Project’s Employees Cool Company Projects

Column name project ssn project budget description

titles name ssn project name budget description

titles Big Splash 555-555-5555 Big Splash 900M Make a big splash

Table 1.b: Project/Employee Table Table 1.c: Project Table

To lower the burden of manual annotation, the Annotated Schema will also support a YAML
[YAML] representation of the JSON-LD [JSON-LD] encoding. The first document in the YAML3

format must be of Schema.org Dataset type and will contain the dataset’s metadata.
Subsequent documents must be W3C CSVW classes with an additional Entity class that we
(CAIDA) created. If the Data Curator represents the dataset as multiple tables, CAIDA’s
annotation software that converts from YAML to JSON-LD will use the CSVW class tableGroup

3 YAML format supports multiple documents in the same file delimited by “---”, the first of these documents
must contain the dataset metadata. The following documents represent the individual table metadata.

to group the tables (illustrated below).

YAML representation Structured Data JSON-LD

Dataset metadata
"@context": "https://schema.org/"
"@type": Dataset

First Table metadata
"@context":
- "https://www.w3.org/ns/csvw#"
- "schema": "http://schema.org/"

"@type": Table
"schema:title": "Cool Company Employees"
tableSchema:
columns:
- name: ssn
titles: SSN
datatype: string
cells:
- value: 555-55-5555

Second Table
"@context":
- "https://www.w3.org/ns/csvw#"

"@type": Table
"schema:title": "Cool Company Projects"

{
"@context": [
"https://schema.org/",
{"csvw": "https://www.w3.org/ns/csvw#"}

],
"@type" "Dataset",
"name": "Cool Company DB",
"mainEntity" : {
"@type":"csvw:tableGroup": {
"csvw:tables": [
{
"@type": "csvw:Table",
"schema:title": "Cool Company Employees",
"csvw:tableSchema": {
"csvw:columns": [
{
"csvw:name": "ssn",
"csvw:titles": "SSN",
"csvw:datatype": "string",
"csvw:cells": [{

"csvw:value": "555-55-5555"
}]
},

illustrating conversion from YAML to JSON-LD representation of data.

A column’s name provides a unique identifier for the column, while a column’s titles (may be
more than one title) provide a list of possible headers for the column. JSON-LD also supports
single and list values for the same property, such as the below example:

"titles": "IPv4" "titles": ["IPv4", "Internet Address version 4"]

illustrating the same property have a single or array as a value

CVSW is uninterested in the presentation of the tables it encodes. As a result, it does not
provide any column presentation functionality. In order to encode this information for use with
CAIDA’s catalog Web interface, Annotated Schema has added the columnReferences property
to CSVW’s column. This property has a list of other child columns which are nested under the
parent in a visual representation.

columns:
- name: name
title: Name
dateType: string

- name: “salary>month”

Name Salary

Monthly Yearly

smith 2000 24000

title: Month
dataType: integer

- name: “salary>year”
title: Month
dataType: integer

- name: salary
title: Salary
dataType: object
"caida:columnReferences": ["salary>month",

"salary>year"]

– Entity –

The Data Curator can group columns in a table such that the values in a single row describe
properties about a single individual. For example, in the “employee” table, the first four columns
of the first row (“last name”, “first name”, “SSN” and “pay”) describe properties of an individual
employee, e.g., Smith. The next two columns (“manager last name” and “manager first name”)
describe properties about the employee’s manager (e.g., Sue). Individuals described by the
same set of columns have a shared implied property embedded in the structure of the table. For
example, in Table 1(a) the first set of four columns describe individuals who are employees, the
next two columns describe managers, and the last two (“home state” and “address”) describe
the employee home addresses. We introduce the term Entity to describe this kind of potentially
multi-column property.

In our example, we have four entities: “employee”, “manager”, “employee address”, and
“project”. In Table 4.a we have annotated these with a new Entity row. Columns that share the
same entity annotation have the same color and name in the Entity row. In the employee table
(Table 4.a), while an individual could theoretically be their own manager, in general these are
two different individuals. Providing different entity names for the employee and manager
facilitates understanding of the table.

Table name Employee

titles Cool Company Employees

Entity name employee manager employee address

Column name last_name first_name ssn pay m_last_name m_first_name address home_state

titles last name first name SSN pay manager last
name

manager first
name address home state

example Smith Tom 555-555-5555 90K Sue Mary 888 Cats Str
San Diego

CA

Table 2.a: Employee Table

Entity name project employee project

Column name name ssn project name budget description

titles Big Splash 555-555-5555 Big Splash 900M Make a big splash

Table 2.b: Project/Employee Table Table 2.c: Project Table

In the example below, we added CAIDA’s Entity class and entities property. The added caida
context is in red, the entities property is in blue, and the Entity class (aka type) is in green.

"@context":
- "https://www.w3.org/ns/csvw#"
- "schema": "http://schema.org/"
- "caida": "http://catalog.caida.org/ontology/"

tableSchema:
"caida:entities":
- "@type": "caida:Entity" <- CAIDA Entity class/type
"caida:name": employee
"caida:columnReferences": ["last_name", "first_name", "ssn", "pay"]

– Classes –

A Data Curator can group these entities into classes. The example shown in the table below
has three classes: Person, Address, and Project. Person is the class for both the employee and
manager entities. Table 3 adds a class annotation row to the tables to provide a class identifier
for each entity.

The same column may map to multiple class annotations. For this example, the column
“home_state” can map to two classes: Address and Region. A class need not use all the
information in a column. For example, the City class would only use the string “San Diego” in the
address column.

Table name Employee

titles Cool Company Employees

Entity name employee manager employee address

class Person Person Address

Column name last_name first_name ssn pay m_last_name m_first_name address home_state

titles last name first name SSN pay manager last
name

manager first
name address home state

example Smith Tom 555-55
5-5555

90K Sue Mary 888 Cats Str
San Diego

CA

Table 3: Adding class annotation row.

Below we have added the property class to CAIDA’s Entity class to allow curators to specify the
entity’s class property. A good resource for Data Curators looking to find existing classes and
properties to use in creating annotations is the Linked Open Vocabularies database
(https://lov.linkeddata.es/dataset/lov) or CAIDA’s ontology (https://catalog.caida.org/ontology).

tableSchema:
entities:
- "@type": "caida:Entity"
"caida:name": employee
"caida:classUrl": "schema:Person"
"caida:columnReferences": ["last_name", "first_name", "ssn", "pay"]

CAIDA’s catalog will use the following Schema.org Class properties: name, alternativeName,
description, and url [SCHEMAORG]. Many web pages in the catalog have limited available
display space, so we have added a label property for UI purposes. If the label is not provided,
CAIDA’s conversion (from YAML to JSON-LD) tool will set label to the shorter of name or
alternativeName. If neither name nor alternativeName is provided, the conversion tools will use
the last word in the class’ URI (so in the case of http://xmlns.com/foaf/0.1/Person the conversion
tool will use Person). If two classes have the same label, the conversion tool will prepend the
term defined in the context (above “foaf”) to the label (resulting in foaf:Person)

Note: Multiple annotation variants are possible. For example, below the two columns “address”
and “home state” are grouped together into class Address, but the Data Curator could have
annotated them separately with classes Street and Region. Additionally, a column can be
shared across multiple entities. In the right table below, the column “address” is shared by both
the entity City and Address. The Data Curator should use the combination that maximizes
clarity.

employee address employee address

Address Address

address home state employee city employee region

888 Cats Str
San Diego

CA City Region

address home state

888 Cats Str
San Diego

CA

– PropertyMaps –

Properties are aspects, attributes, or characteristics of classes. The Data Curator can map one
or more table columns to a property. A PropertyMap provides the mapping between a property

https://lov.linkeddata.es/dataset/lov
https://catalog.caida.org/ontology
http://xmlns.com/foaf/0.1/Person

and a list of columns. Each PropertyMap includes two properties: property and columns. (Yes,
the property is a property!) In the example below the “employee address” entity’s propertyMaps
contains a mapping from the properties street and city to the column “address”, while the
“employee address” entity’s region property maps to the column “home_state.”

Note: Classes start with uppercase letters and properties start with lowercase letters. So Table
is a class, while table is a property.

A Data Curator may define properties in terms of properties of a declared child entity. This
nesting provides a more detailed description of the classes and properties contained in the
table. To enable this nesting, a PropertyMap would include the child entity’s names in the
PropertyMap’s entities property. The parent entity’s PropertyMap maps the property to the child
entity. The child entity’s PropertyMap maps the property of the child entity’s class to columns. In
the example PropertyMaps below, the parent entity “employee address”’s property “city” maps to
the child entity “employee city”, which has its own property map. In the “employee city”’s
PropertyMap, the property name maps to the column “address”.

Some properties combine multiple columns. In the example below the property name contains
the columns “last_name” and “first_name”. In other cases the Data Curator may wish to define
the property as a combination of other properties such as “street_city_region”. Properties do not
always map one-to-one onto a column, so property hierarchies allow a Data Curator to specify
that the “street_city_region” is using the same values as “street”, “city”, and “region”. The
following table contains the added PropertyMap property.

Table name Employee

titles Cool Company Employees

Entity name employee manager employee address emp..regio
n

class Person Person Address Region

PropertyMap
property name identity

number
salary name steet_city_region identifier

familyName givenName familyName giveName street city region

entities emp..city emp..regio
n

columns last_name first_name ssn pay m_last_name m_first_name addres
s

home_stat
e

last_name, first_name m_last_name, m_first_name

Column titles last name first name SSN pay manager last
name

manager first
name

address home state

example Smith Tom 555-555-5
555

90K Sue Mary 888 Cats Str
San Diego

CA

Table 4: We have added the propertyMaps property to the Entity to store a list of
PropertyMaps. The PropertyMap (the set of rows in the red dashed line) has four properties:
propertyUrl, columnReference, and entityReference. The properties columnReference and
entityReference can store one or a list.

- "@type": "caida:Entity"
"caida:name": employee
"caida:classUrl": "schema:Person"

"caida:columnReferences": ["last_name", "first_name", "ssn", "pay"]
"caida:propertyMaps":
- "caida:propertyUrl": "schema:familyName"
"caida:columnReferences": last_name"

- "caida:propertyUrl": "schema:givenName"
"caida:columnReferences": given_name"

- "caida:propertyUrl": "schema:name"
"caida:columnReferences": ["last_name", "first_name"]

- "@type": "caida:Entity"
"caida:name": Employee region
"caida:classUrl": "schema:State"
"caida:columnReferences": "home_state"
"caida:propertyMaps":
- "caida:propertyUrl": "schema:identifier"
"caida:columnReferences": "home state"

- "@type": "caida:Entity"
"caida:name": Employee Address
"caida:classUrl": "caida:Address"
"caida:columnReferences": ["address", "home_state"]
"caida:propertyMaps":
- "caida:propertyUrl": "caida:street"
"caida:columnReferences": "address"

- "caida:propertyUrl": "caida:city"
"caida:entityReference": "Employee City"

- "caida:propertyUrl": "caida:region"
"caida:entityReference": "Employee Region"

CSVW only supports propertyUrl for a single column, so when our conversion tools create
Google-friendly structured data, these tools will copy over only the propertyUrl when the
PropertyMap contains a single column, illustrated below.

- "@type": "caida:Entity"
"caida:name": employee region
"caida:classURL": "http://…#Region"
"caida:columns": "home_state"
"caida:propertyMaps":
- "caida:propertyUrl": "http://…#identifier"
"caida:columnReferences": "home_state"

"csvw:columns": [
{

"csvw:name": "home_state",
"csvw:titles": "home state",
"csvw:datatype": "string",
"csvw:propertyUrl:": "http://…#identifier"

},

– Namespace –

A Data Curator can specify one or more Namespaces (a class, so capitalized) as part of a
PropertyMap. A Namespace provides a guide to the set of class identifiers contained in the

property. In our example, the “employee” entity’s “identity number” property has identifiers from
the U.S. Social Security Number namespace, and “employee region” entity’s “identifier” has
identifiers from ISO 3166 country codes.

Namespaces are descriptive, not prescriptive. A dataset that mostly uses the IATA airport code
for cities, with a few exceptions, could be annotated with the IATA airport code namespace. A
property may have multiple Namespaces. A “national identification number” property could
include two Namespaces: U.S. Social Security Numbers and Canada’s Social Insurance
Numbers.

Table name Employee

titles Cool Company Employees

Entity name employee manager employee address emp..region

class Person Person Address Region

PropertyMap
property name identity

number
salary name steet_city_region identifier

familyNam
e

givenNam
e

familyName giveName street city region

entities emp..city emp..regio
n

namespaces us-ssn us-postal-address iso-alpha2

columns last_name first_name ssn pay m_last_name m_first_nam
e

addre
ss

home_state

last_name, first_name m_last_name, m_first_name

Column titles last name first name SSN pay manager last
name

manager
first name

address home state

example Smith Tom 555-555-555
5

90K Sue Mary 888 Cats Str
San Diego

CA

Table 5: We have added the namespaces property to the PropertyMap which contains a list of
Namespaces.

CAIDA’s catalog uses the Namespace’s name, label, description, and url.

"caida:propertyMaps":
- "caida:columns": "ssn"
"caida:propertyUrl": "https://w3id.org/sbeo#id"
"caida:namespaceUrl": "caida:UsaSsnNamespace"

– SubjectEntity –

Many tables have a primary subject entity (subjectEntity). For example, the “Employee” table
mostly describes the employees, and not the managers or employee addresses. Thus the
“employee” entity is the subjectEntity of the table. SubjectEntities are optional; not all tables will

have a good subject. If the table contains a single entity it will be the table’s subject entity.

The Data Curator should identify the subjectEntity of a table (if there is one) that provides the
greatest clarity. In our example, the “Employee” Table’s subject is the “Employee” and the
“Project” Table’s subject is the “project”. The “Project’s Employees” Table (Table 6b) could have
a subject of “project”, “employee”, or none. If the Data Curator wants to suggest that the subject
of the dataset as a whole is the employee, then they could annotate the table’s subject entity as
“employee”. Table 6 adds a new subjectEntity row.

Table name Employee

titles Cool Company Employees

subjectEntity

Entity name employee manager employee address emp..region

class Person Person Address Region

PropertyMap
property name identity

number
salary name steet_city_region identifier

familyNam
e

givenNam
e

familyName giveName street city region

entities emp..city emp..regio
n

namespaces us-ssn us-postal-address iso-alpha2

columns last_name first_name ssn pay m_last_name m_first_nam
e

addre
ss

home_state

last_name, first_name m_last_name, m_first_name

Column titles last name first name SSN pay manager last
name

manager
first name

address home state

example Smith Tom 555-555-555
5

90K Sue Mary 888 Cats Str
San Diego

CA

Table 6.a: Employee with a new subjectEntity row

table name Project’s Employees Cool Company Projects

subjectEntity project

Entity name project employee project

PropertyMap … … …

Column titles name ssn project name budget description

example Big Splash 555-555-5555 Big Splash 900M Make a big splash

Table 6.b: Project/Employee Table Table 6.c: Project Table

Similarly, we have added a subjectEntityReference field to the Table description below.

"@type": Table
"dc:title": "Cool Company Employees"

"dcat:keyword": ["employee", "pay"]
"caida:subjectEntityReference": "employee"

– YAML short cuts –

A Data Curator may manually or programmatically create the JSON-LD directly, but to lower the
burden of generating manual YAML annotations we will support the following short cuts.

#Documents: YAML supports storing the Dataset and Tables in the same file as separate
documents using the “---” YAML marker. The conversion script will compile them into JSON-LD.

Dataset metadata
"@context": "https://schema.org"
"@type": Dataset

First Table metadata
"@context":
- "https://www.w3.org/ns/csvw#"
- "dc": "http://purl.org/dc/terms/"

"@type": Table

#CopyDatasetUrl: A dataset may have almost exactly the same metadata as an existing
dataset. Consider two packet traces taken on different dates. The second dataset’s metadata is
identical to the first except for the date. To support this scenario, our Annotated Schema
specification includes the CopyDatasetUrl command in the YAML representation.

Dataset metadata
"#copyDatasetUrl": "https://catalog.caida.org/dataset/telescope_darknet_scanners"
"dateCreated": "2023/04/23"

#CopyTableUrl: This commend is the same as CopyDatasetUrl, but copies over the content of
a single table. The Data Curator specifies the table name after the ‘#’ anchor in the URL.

First Table metadata
"#copyTableUrl": "https://catalog.caida.org/dataset/as_rank#as_information"

caida: To reduce the syntactic burden, the Data Curator may omit the “caida:” for the CAIDA
Entity related properties, and the conversion script will add it to the compiled JSON-LD

representation.

tableSchema:
"caida:entities":
- "@type": Entity
name: employee
classUrl: "http://xmlns.com/foaf/0.1/Person"
columns: ["last_name", "first_name", "ssn", "pay"]

example: To reduce the syntactic burden of data curatoin, we will support the “example”
property on a Table Column. The conversation script will map this syntax into the
“cell”:[“value”:”XXX”] JSON-LD representation.

columns:
- name: ssn
titles: SSN
datatype: string
example: 555-55-5555

columns:
- name: ssn
titles: SSN
datatype: string
cell:
-value: 555-55-5555

– Review –

We will be representing metadata for CAIDA’s datasets using a combination of Schema.org’s
Datasets (schema.org/Dataset) and W2C’s CSVW tables (www.w3.org/ns/csvw). We model
our approach on Google’s Dataset’s Structured Data standard
(developers.google.com/.../dataset), with the addition of Entities to CSVW’s tables.

Entities allow us to differentiate individuals of the same class annotated in the same row, and
express more complex mappings between property and columns. We add to CSVW’s tables the
property entities as a list of Entities represented in the table, and subjectEntity to contain the
name of the entity that is the subject of the table.

Entity is a logical set of table columns annotating the same individual. An Entity contains the
following properties: name which uniquely identifies the Entity in the table, classUrl which
identifies the Entity’s class, columns which contains a list of the column names that describe
entity values, and properties with a list of PropertyMaps.

PropertyMap is a mapping between class properties and table columns. A PropertyMap
contains a propertyUrl with a URL pointing to a property definition, and optional columns
which contains the set of columns needed to create the property value, entities which contains
the set of child entities, and namespaceUrl defining an identifier namespace for the property’s
values.

We propose to use this standard to provide annotations for additional objects such as papers,

http://schema.org/Dataset
https://www.w3.org/ns/csvw
https://developers.google.com/search/docs/appearance/structured-data/dataset

presentations, recipes, or software.

General class declarations.
References:
[GKG] “How Google's Knowledge Graph works - Knowledge Panel Help.” Google
Support, https://support.google.com/knowledgepanel/answer/9787176?hl=en.
Accessed 22 February 2023.
[OWL] “Web Ontology Language (OWL)”, W3C, https://www.w3.org/OWL/. Accessed
23 February 2023.
[RDF] “Resource Description Framework (RDF) ”, W3C, https://www.w3.org/RDF/.
Accessed 23 February 2023.
[R2RML] “R2RML: RDB to RDF Mapping Language”, https://www.w3.org/TR/r2rml/
accessed 10 March 2023
[RML] “RDF Mapping Language”, W3C, https://rml.io/specs/rml, Accessed 11
March 2023
[CSVW] “CSVW Nampespace Vocabulary Terms - W3C”, W3C,
https://www.w3.org/ns/csvw, accessed 10 March 2023
[JSON-S] “JSON Schema | The home of JSON Schema”, “http://json-schema.org”.
JSON-Schema, Accessed 24 February 2023.
[JSON-LD] “JSON for Linking Data”, “https://json-ld.org/”, Accessed 21
February
[YAML] “YAML Ain’t Markup Language”, “https://yaml.org/”, Accessed 21,
February
[Semantic] “Semantic network”,
“https://en.wikipedia.org/wiki/Semantic_network” , Accessed 24 February 2023
[SEM-DEAD] “The semantic web is dead”,
https://terminusdb.com/blog/the-semantic-web-is-dead/, Accessed 21 February
2023
[IP-COM] “IP Networks Topology an Communications Ontology”,
https://github.com/twosixlabs/icas-ontology/blob/master/ontology/ipnet.ttl,
Accessed 24 February 2023
[SCHEMAORG] “schema.org”, https://schema.org/, accessed 10 March 2023
[SCHEMAORG-DAT] “Dataset a Schema.org Type”, https://schema.org/Dataset,
accessed 10 March 2023
[PUBLIC-VOCABS]
https://lists.w3.org/Archives/Public/public-vocabs/2013Aug/0033.html, 13 Aug
2013
[SCHEMAORG-TAB] “Describing tables with schema.org”,
https://lists.w3.org/Archives/Public/public-vocabs/2013Aug/att-0033/Lookingin
sidetables.html, Accessed 10 March 2023, last updated 8 May 2013
[SCHEMAORG-IS] “Improving Dataset descriptions”,
https://github.com/schemaorg/schemaorg/issues/1083, accessed 10 March 2023,
issue closed 2018, last comment 2020
[GO-DATA] “Dataset (Dataset, DataCatalog, DataDownload) structured data”,
https://developers.google.com/search/docs/appearance/structured-data/dataset,
Google, accessed 11 March 2023
[GO-DATA-CSVW] “Dataset (Tabular dataset)”,
https://developers.google.com/search/docs/appearance/structured-data/dataset#

https://www.w3.org/OWL/
https://www.w3.org/RDF/
https://www.w3.org/TR/r2rml/
https://rml.io/specs/rml
https://www.w3.org/ns/csvw
https://json-ld.org/
https://yaml.org/
https://terminusdb.com/blog/the-semantic-web-is-dead/
https://github.com/twosixlabs/icas-ontology/blob/master/ontology/ipnet.ttl
https://schema.org/
https://schema.org/Dataset
https://lists.w3.org/Archives/Public/public-vocabs/2013Aug/0033.html
https://lists.w3.org/Archives/Public/public-vocabs/2013Aug/att-0033/Lookinginsidetables.html
https://lists.w3.org/Archives/Public/public-vocabs/2013Aug/att-0033/Lookinginsidetables.html
https://github.com/schemaorg/schemaorg/issues/1083
https://developers.google.com/search/docs/appearance/structured-data/dataset
https://developers.google.com/search/docs/appearance/structured-data/dataset#tabular

tabular, Google, accessed 11 March 2023
[SCHEMAORG-IS] https://www.w3.org/wiki/WebSchemas/SchemaDotOrgProposals last
updated 12 May 2015

https://developers.google.com/search/docs/appearance/structured-data/dataset#tabular
https://www.w3.org/wiki/WebSchemas/SchemaDotOrgProposals

