

GMI-AIMS-5 Workshop

# **Cloud-telescopes**

**Ongoing work** 

**Nils Kempen** 

13 February 2025 University of Münster - NetSec Research Group **P**III

Î

living.knowledge



# 🔭 Network telescope (mis)-adventures



# Universität

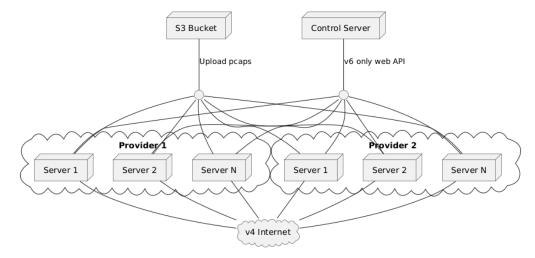
## Idea(s)

- Different telescopes/ vantage-points provide different views
- Understanding which is best for specific observations
- Cloud-based approaches seem promising
  - Still unclear what the best way to operate them is
  - e.g. Holding time of an IP Address,
  - ► VM configuration,
  - economic perspective

#### When do we need which lense?

► current literature<sup>™</sup> dosn't provide clear answers yet




#### Approach - data collection

#### Build a distributed, multi-cloud network telescope

- configurable lifetime
- provider agnostic
- variable size
- My original idea  $\rightarrow$  Go program using provider SDK's
- ► Hackathon idea → Use Terraform scripts to deploy servers



#### Approach - data collection







### **Hackathon results**

| Provider     | Cost (IP/M) | Approach             |  |
|--------------|-------------|----------------------|--|
| DigitalOcean | 4.0\$       | One VM per IP        |  |
| OVH          | 1.8\$       | Leasing subnet       |  |
| AWS          | 7.5\$       | One VM per IP        |  |
| Azure        | 9.0\$       | One VM per IP        |  |
| Azure        | 4.8\$       | Load balancer        |  |
| GCP          | 8.5\$       | One VM per IP        |  |
| GCP          | 5.4\$       | Load balancer        |  |
| Alibaba      | 3.8\$       | VM with multiple IPs |  |
| Vultr        | 3.5\$       | One VM per IP        |  |



#### **Hackathon results**

- Fusion of approaches
- Existing setup of Bernhard for Vultr
- mine for DigitalOcean
- Repurpose Sayed's & Ricky's Terraform code for passive monitoring
- Working nodes: Vultr 29 VMs, DigitalOcean 42 VMs, AWS 60 VMs, Azure 76 VMs, GCP 109 VMs → 316 VMs/ IPs
- Cost: DO 5,6\$/D, Vultr 4,8\$/D, GCP 42\$/D, AWS 54\$/D, Azure 210\$/D

### **Hackathon results**

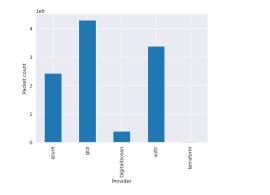



Figure: # of packets per provider

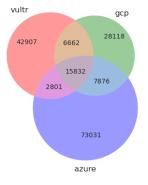



Figure: overlapping source ips



#### **Hackathon results**

| ip             |         |         |        |       |
|----------------|---------|---------|--------|-------|
| 169.254.169.25 | 54 44   | 41572   |        |       |
| 103.141.138.25 | 54 13   | 36554   |        |       |
| 195.178.110.10 | 09 8    | 31673   |        |       |
| 62.210.81.232  | 8       | 31055   |        |       |
| 195.178.110.43 | 16      | 55317   |        |       |
|                |         |         |        |       |
| 218.110.241.22 | 25      | 1       |        |       |
| 119.179.35.52  |         | 1       |        |       |
| 92.44.200.110  |         | 1       |        |       |
| 123.245.85.17  | 1       | 1       |        |       |
| 191.58.49.18   |         | 1       |        |       |
| Name: count, l | Length: | 104287, | dtype: | int64 |
|                |         |         |        |       |

Figure: Most common source IPs

What do we see here?

- Local ip
- Scanners
- Hosting-providers
- ▶ ?



#### **Hackathon results**

| CC    |                     | asn       |                  |
|-------|---------------------|-----------|------------------|
| us    | 1627002             | 396982    | 764248           |
| br    | 1108868             | 265928    | 473611           |
| **    | 444048              | 264332    | 452453           |
| uk    | 293015              | 8075      | 329906           |
| nl    | 270680              | 16509     | 231781           |
| ad    | 212313              | 48090     | 212298           |
| cn    | 207621              | 214295    | 198548           |
| ro    | 205657              | 202425    | 184212           |
| vn    | 186564              | 135905    | 179102           |
| fr    | 173387              | 63949     | 175747           |
| Name: | count, dtype: int64 | Name: cou | nt, dtype: int64 |

Figure: Most common source Countries

Figure: Most common source ASes



#### **Hackathon results**

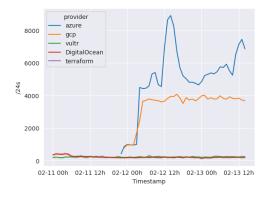



Figure: # of /24s per provider

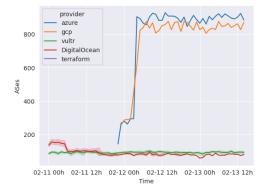


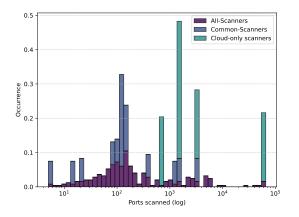

Figure: # of ASes per provider



### **Hackathon learnings**

- Deploying a cloud-telescope is hard
  - All cloud-providers work a bit different
  - Destination IPs are often not directly linked to the interface (NAT)
  - Old software
  - Cloud-internal traffic

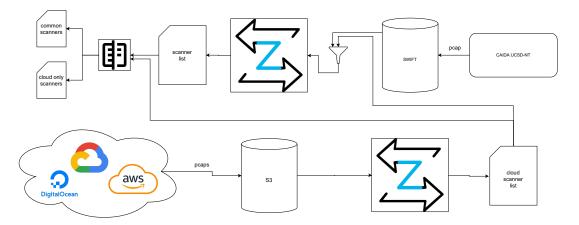



#### **Future work**

► Fix bugs

- Analyze the data
- Compare with other telescopes/ use them as baseline
  - Identify cloud scanners
  - ▶ Look for cloud scanners in other network telescopes  $\rightarrow$  UCSD-NT, ...




#### Future work - inspiration



- If you scan cloud address space you are likely to hit something
- Resource intensive scans could be more focussed and may not be seen in "normal" telescopes.
- Further investigation of cloud-scanner behavior is needed.



## Future work - approach





## Validation

- What even is a telescope?
  - > For cloud approaches we need to investigate what level of interaction we want
  - Save all packets and drop
  - Send RST
  - Complete Handshake
  - Emulate services
- Validate the scanner detection
  - What is a scanner
  - What categories can we build?
  - No clear field-wide definition
- Validate what wee see in the cloud
  - With other telescopes
  - Over time



# **Questions?**