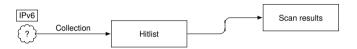
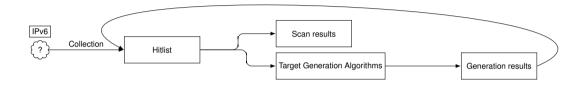
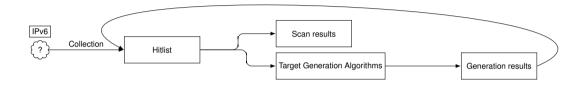
Target Generation for IPv6 Hitlists

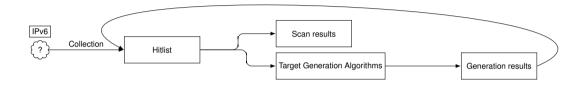
Lion Steger, Liming Kuang, Johannes Zirngibl Georg Carle, Oliver Gasser



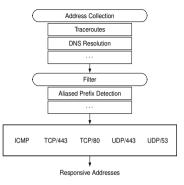
Tuesday 11th February, 2025


Chair of Network Architectures and Services School of Computation, Information, and Technology Technical University of Munich


• The IPv6 address space is too large and sparse be scanned exhaustively.

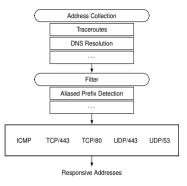

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Target Generation Algorithm (TGA) can generate new targets from known addresses.



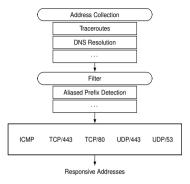
- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Target Generation Algorithm (TGA) can generate new targets from known addresses.
- How do TGAs react to different inputs?

- The IPv6 address space is too large and sparse be scanned exhaustively.
- Internet measurements rely on collections of active IPv6 addresses called hitlists.
- Target Generation Algorithm (TGA) can generate new targets from known addresses.
- How do TGAs react to different inputs?
- What output do they produce and how do we evaluate it?


Service was introduced by Gasser et al. in 2018.¹

 ¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564
³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440
³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic

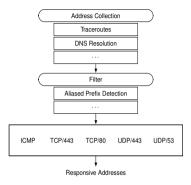
Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073


- Service was introduced by Gasser et al. in 2018.¹
- Collects more than 2.4B addresses from various sources.

 ¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564
³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022, DOI: 10.1145/3517745.3561440

³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073

- Service was introduced by Gasser et al. in 2018.¹
- Collects more than 2.4B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.

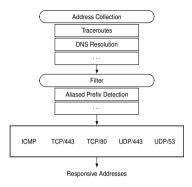


¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564 ³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference

(IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440

³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073

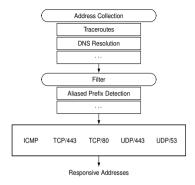
- Service was introduced by Gasser et al. in 2018.¹
- Collects more than 2.4B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.
- Contains 21 M addresses responsive on at least one port.



 ¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564
³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022, DOI: 10.1145/3517745.3561440

³I. Stoger J. Kuppa J. Zingibl. et al. "Target acquired? evaluating target gov

³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073


- Service was introduced by Gasser et al. in 2018.¹
- Collects more than 2.4B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.
- Contains 21 M addresses responsive on at least one port.
- TGAs were employed by Zirngibl et al. in 2022.²
 - · Generate new addresses from Hitlist addresses.
 - Used to increase coverage of the IPv6 address space by 168%.

¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564 ³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440

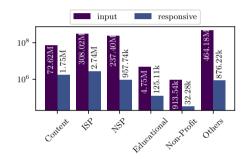
³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073

- Service was introduced by Gasser et al. in 2018.¹
- Collects more than 2.4B addresses from various sources.
- Runs addresses through filters and scans them on different ports.
 - TCP/80, TCP/443, UDP/53, UDP/443, ICMP.
- Contains 21 M addresses responsive on at least one port.
- TGAs were employed by Zirngibl et al. in 2022.²
 - · Generate new addresses from Hitlist addresses.
 - Used to increase coverage of the IPv6 address space by 168%.
- More TGAs and inputs were evaluated in 2023.³

¹O. Gasser, Q. Scheitle, P. Foremski, et al., "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564 ³J. Zirngibl, L. Steger, P. Sattler, et al., "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440

³L. Steger, L. Kuang, J. Zirngibl, et al., "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073

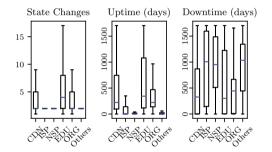
• Addresses from different network types as inputs.

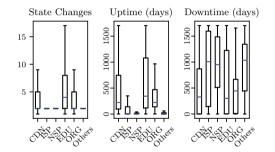

⁴https://www.peeringdb.com/

- Addresses from different network types as inputs.
- Categorization via PeeringDB.⁴
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to Others.

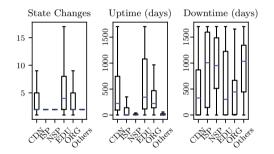
- Addresses from different network types as inputs.
- Categorization via PeeringDB.⁴
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to Others.
- Category representation in Hitlist is not uniform.

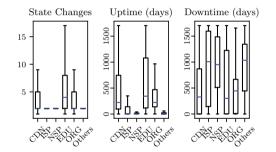
⁴https://www.peeringdb.com/

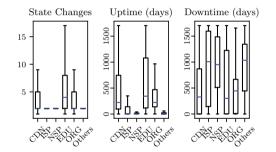

- Addresses from different network types as inputs.
- Categorization via PeeringDB.⁴
 - Community-maintained database.
 - Offers categorization on AS-level.
 - Includes 11 categories, we chose 5.
 - Remaining categories combined to Others.
- Category representation in Hitlist is not uniform.
- Most frequent categories are ISP, CDN and NSP.


⁴https://www.peeringdb.com/

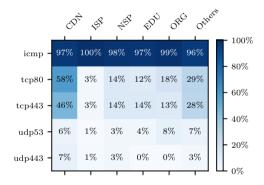
Difference in temporal stability:


• State changes denote a change in responsiveness.

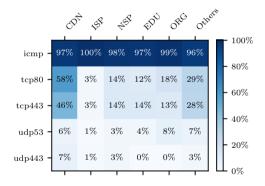

- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.


- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.

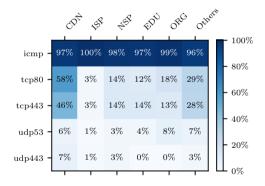
- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.
- CDN addresses have longer average uptimes and a low number of downtimes.

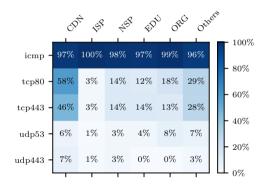


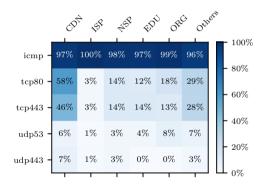
- State changes denote a change in responsiveness.
- Sum of down- and uptimes since inclusion in Hitlist.
- ISP addresses have one uptime around seven days.
- CDN addresses have longer average uptimes and a low number of downtimes.
- Should be considered in longitudinal measurements.



Difference in port responsiveness:


• Response rate to each port probe per category.

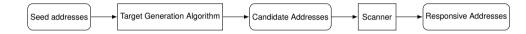

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.

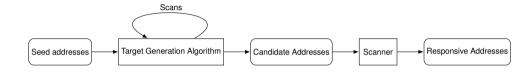

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.

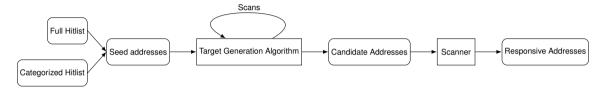
- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.
- CDN addresses have the highest response rates to TCP/80, TCP/443 and UDP/443.

- Response rate to each port probe per category.
- Categories share high response rates to ICMP probes.
- ISP addresses only have high response rates to ICMP.
- CDN addresses have the highest response rates to TCP/80, TCP/443 and UDP/443.
- Port responses are important depending on use case.

Seed addresses


Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).


- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- · Generate new potentially active addresses (candidate data set).


- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- · Generate new potentially active addresses (candidate data set).
- · Candidates are scanned to check responsiveness.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- · Generate new potentially active addresses (candidate data set).
- · Candidates are scanned to check responsiveness.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- · Generate new potentially active addresses (candidate data set).
- · Candidates are scanned to check responsiveness.
- Some algorithms implement custom scanning to dynamically adapt generation.

- Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
- Generate new potentially active addresses (candidate data set).
- Candidates are scanned to check responsiveness.
- Some algorithms implement custom scanning to dynamically adapt generation.
- We use the full Hitlist (default input) as well as the categorized Hitlist (specific input).

Target Generation Target Generation Algorithms

• So far we evaluated 10 open source algorithms from peer-reviewed publications.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]

Target Generation Target Generation Algorithms

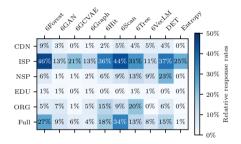
- So far we evaluated 10 open source algorithms from peer-reviewed publications.
- Methods include language models, machine learning, graph theory.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]

General observations:

General observations:

• Size of candidates set varies greatly

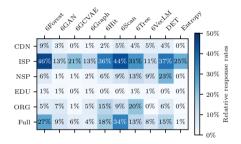

General observations:

- Size of candidates set varies greatly
- Default input leads to a bias towards ISP addresses

General observations:

- Size of candidates set varies greatly
- Default input leads to a bias towards ISP addresses

Input-dependent results:

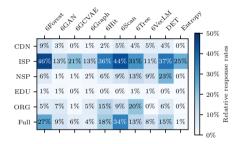


General observations:

- Size of candidates set varies greatly
- Default input leads to a bias towards ISP addresses

Input-dependent results:

• TGAs have vastly different response rates.

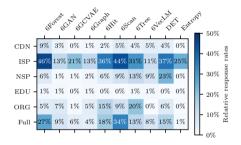

Target Generation Input-dependent behavior

General observations:

- Size of candidates set varies greatly
- Default input leads to a bias towards ISP addresses

Input-dependent results:

- TGAs have vastly different response rates.
- Dynamic algorithms have higher response rates.


Target Generation Input-dependent behavior

General observations:

- Size of candidates set varies greatly
- Default input leads to a bias towards ISP addresses

Input-dependent results:

- TGAs have vastly different response rates.
- Dynamic algorithms have higher response rates.
- ISP input yields more responsive addresses.

Future Work: More Target Generation Algorithms

• The TGA field grew considerably in the last two years.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]
2023	Liu et al.	6Former	Static	
2023	Chen et al.	6Community	Static	
2024	Williams et al.	6Sense	Dynamic	
2024	Jiao et al.	6GAI	Static	
2024	Zhang et al.	6MCBLM	Static	
2024	Zhang et al.	6Rover	Dynamic	
2024	Liu et al.	6Subpattern	Dynamic	
2024	He et al.	6Diffusion	Static	
2025	Zhang et al.	6Vision	Dynamic	
2025	Sun et al.	6Loda	Static	

Future Work: More Target Generation Algorithms

- The TGA field grew considerably in the last two years.
- Many more old algorithms without code.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]
2023	Liu et al.	6Former	Static	
2023	Chen et al.	6Community	Static	
2024	Williams et al.	6Sense	Dynamic	
2024	Jiao et al.	6GAI	Static	
2024	Zhang et al.	6MCBLM	Static	
2024	Zhang et al.	6Rover	Dynamic	
2024	Liu et al.	6Subpattern	Dynamic	
2024	He et al.	6Diffusion	Static	
2025	Zhang et al.	6Vision	Dynamic	
2025	Sun et al.	6Loda	Static	

Future Work: More Target Generation Algorithms

- The TGA field grew considerably in the last two years.
- Many more old algorithms without code.
- Increasing focus on seedless prefixes.
 - Address pattern transfer from seeded to unseeded pfxs.
 - Matching based on different properties such as organization or business category.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]
2023	Liu et al.	6Former	Static	
2023	Chen et al.	6Community	Static	
2024	Williams et al.	6Sense	Dynamic	
2024	Jiao et al.	6GAI	Static	
2024	Zhang et al.	6MCBLM	Static	
2024	Zhang et al.	6Rover	Dynamic	
2024	Liu et al.	6Subpattern	Dynamic	
2024	He et al.	6Diffusion	Static	
2025	Zhang et al.	6Vision	Dynamic	
2025	Sun et al.	6Loda	Static	

Future Work: More Target Generation Algorithms

- The TGA field grew considerably in the last two years.
- Many more old algorithms without code.
- Increasing focus on seedless prefixes.
 - Address pattern transfer from seeded to unseeded pfxs.
 - Matching based on different properties such as organization or business category.
- More seed datasets to be included.

Year	Authors	Name	Scanning	Ref
2016	Foremski et al.	Entropy/IP	Static	[4]
2019	Liu et al.	6Tree	Dynamic	[5]
2020	Song et al.	DET	Dynamic	[6]
2020	Cui et al.	6GCVAE	Static	[7]
2021	Cui et al.	6VecLM	Static	[8]
2021	Cui et al.	6GAN	Static	[9]
2021	Hou et al.	6Hit	Dynamic	[10]
2022	Yang et al.	6Graph	Static	[11]
2022	Yang et al.	6Forest	Static	[12]
2023	Hou et al.	6Scan	Dynamic	[13]
2023	Liu et al.	6Former	Static	
2023	Chen et al.	6Community	Static	
2024	Williams et al.	6Sense	Dynamic	
2024	Jiao et al.	6GAI	Static	
2024	Zhang et al.	6MCBLM	Static	
2024	Zhang et al.	6Rover	Dynamic	
2024	Liu et al.	6Subpattern	Dynamic	
2024	He et al.	6Diffusion	Static	
2025	Zhang et al.	6Vision	Dynamic	
2025	Sun et al.	6Loda	Static	

• Network categories are not evenly distributed in the Hitlist service.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - Categories show different behavior in port responses and temporal stability.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.

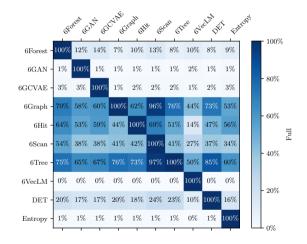
- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - \rightarrow Filtering input can avoid scanning overhead.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - \rightarrow Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - \rightarrow Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.

- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - \rightarrow Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.
 - Response rates vary depending on input.



- Network categories are not evenly distributed in the Hitlist service.
 - High amount of ISP addresses.
 - · Categories show different behavior in port responses and temporal stability.
 - ISP addresses are less stable than CDN addresses.
 - ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.
 - \rightarrow Filtering input can avoid scanning overhead.
- TGAs by default are biased towards ISP addresses.
 - Default input leads to ICMP-biased responsiveness.
 - Response rates vary depending on input.
 - \rightarrow Filtering input can avoid biased candidate addresses.

Backup

Cross-algorihm responsiveness

Backup

Generation results

	6Gr	6Graph		6Scan		6VecLM	
	cand.	resp.	cand.	resp.	cand.	resp.	
ISP	25M	ЗM	8M	4M	18k	2k	
EDU	2M	22k	10M	38k	84k	1k	
Non-Profit	296k	15k	10M	946k	0	0	
 Full	106M	 5M	 6M	 2M	 49k	 4k	

- Size of candidates (cand.) varies greatly from 18 k (or zero for 6VecLM) to 106 M.
- Size of candidate set depends on algorithm as well as input.

References

- [1] O. Gasser, Q. Scheitle, P. Foremski, Q. Lone, M. Korczyński, S. D. Strowes, L. Hendriks, and G. Carle, "Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists," in Proc. ACM Int. Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564.
- [2] J. Zirngibl, L. Steger, P. Sattler, O. Gasser, and G. Carle, "Rusty clusters? dusting an IPv6 research foundation," in Proc. ACM Int. Measurement Conference (IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440.
- [3] L. Steger, L. Kuang, J. Zirngibl, G. Carle, and O. Gasser, "Target acquired? evaluating target generation algorithms for ipv6," in 2023 7th Network Traffic Measurement and Analysis Conference (TMA), IEEE, Jun. 2023. DOI: 10.23919/tma58422.2023.10199073.
- [4] P. Foremski, D. Plonka, and A. Berger, "Entropy/IP: Uncovering Structure in IPv6 Addresses," in Proc. ACM Int. Measurement Conference (IMC), Santa Monica, California, USA, 2016. DOI: 10.1145/2987443.2987445.
- [5] Z. Liu, Y. Xiong, X. Liu, W. Xie, and P. Zhu, "6Tree: Efficient dynamic discovery of active addresses in the IPv6 address space," Computer Networks, vol. 155, May 2019. DOI: 10.1016/j.comnet.2019.03.010.
- [6] G. Song, J. Yang, Z. Wang, L. He, J. Lin, L. Pan, C. Duan, and X. Quan, "DET: Enabling Efficient Probing of IPv6 Active Addresses," IEEE/ACM Transactions on Networking, vol. 30, no. 4, Aug. 2022. DOI: 10.1109/tnet.2022.3145040.
- [7] T. Cui, G. Gou, and G. Xiong, "6GCVAE: Gated Convolutional Variational Autoencoder for IPv6 Target Generation," in Advances in Knowledge Discovery and Data Mining, Springer International Publishing, 2020. DOI: 10.1007/978-3-030-47426-3_47.

References

- [8] T. Cui, G. Xiong, G. Gou, J. Shi, and W. Xia, "6VecLM: Language Modeling in Vector Space for IPv6 Target Generation," in Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track, Springer International Publishing, 2021. DOI: 10.1007/978-3-030-67667-4_12.
- [9] T. Cui, G. Gou, G. Xiong, C. Liu, P. Fu, and Z. Li, "6GAN: IPv6 Multi-Pattern Target Generation via Generative Adversarial Nets with Reinforcement Learning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2021. DOI: 10.1109/infocom42981.2021.9488912.
- [10] B. Hou, Z. Cai, K. Wu, J. Su, and Y. Xiong, "6Hit: A Reinforcement Learning-based Approach to Target Generation for Internet-wide IPv6 Scanning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2021. DOI: 10.1109/infocom42981.2021.9488794.
- [11] T. Yang, B. Hou, Z. Cai, K. Wu, T. Zhou, and C. Wang, "6Graph: A graph-theoretic approach to address pattern mining for Internet-wide IPv6 scanning," Computer Networks, vol. 203, Feb. 2022. DOI: 10.1016/j.comnet.2021.108666.
- [12] T. Yang, Z. Cai, B. Hou, and T. Zhou, "6Forest: An Ensemble Learning-based Approach to Target Generation for Internet-wide IPv6 Scanning," in Proc. IEEE Int. Conference on Computer Communications (INFOCOM), IEEE, May 2022. DOI: 10.1109/infocom48880.2022.9796925.
- [13] B. Hou, Z. Cai, K. Wu, T. Yang, and T. Zhou, "6Scan: A High-Efficiency Dynamic Internet-Wide IPv6 Scanner With Regional Encoding," IEEE/ACM Transactions on Networking, 2023. DOI: 10.1109/tnet.2023.3233953.