The Current State of QUIC Deployments and Used Libraries

Johannes Zirngibl

Tuesday 11th February, 2025

GMI-AIMS-5

Motivation

This is an update to results published in

"QUIC Hunter: Finding QUIC Deployments and Identifying Server Libraries Across the Internet"

Motivation

This is an update to results published in

"QUIC Hunter: Finding QUIC Deployments and Identifying Server Libraries Across the Internet"

A large variety of QUIC implementations

- QUIC can be implemented in user space
- More than 20 implementations exist
- They follow the same standard

But differences are visible impacting the effectiveness of scans and research

• *e.g.*, Is the observed performance due to the network or the used implementation?

	aioquic	Google Q.	LSQUIC	mvfst
Flow Control category	2	1	1	1
Retransmission approach	2	1	2	3
DATA frame size	large	medium	small	large

B. Jaeger, et al., "QUIC on the Highway: Evaluating Performance on High-Rate Links," IFIP Networking 2023

² R. Marx et al., "Same Standards, Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity," EPIQ 2022

Motivation

This is an update to results published in

"QUIC Hunter: Finding QUIC Deployments and Identifying Server Libraries Across the Internet"

A large variety of QUIC implementations

- QUIC can be implemented in user space
- More than 20 implementations exist
- They follow the same standard

But differences are visible impacting the effectiveness of scans and research

• *e.g.*, Is the observed performance due to the network or the used implementation?

Which libraries are actually used?

² R. Marx et al., "Same Standards, Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity," EPIQ 2022

Different Features²:

	aioquic	Google Q.	LSQUIC	mvfst
Flow Control category	2	1	1	1
Retransmission approach	2	1	2	3
DATA frame size	large	medium	small	large

How can we Identify QUIC Server Libraries?

We need available and stable features which can not be configured by users.

How can we Identify QUIC Server Libraries?

We need available and stable features which can not be configured by users.

(i) Transport parameters (TPs)

- QUIC defines a new TLS extension
 - Implemented within the QUIC library
 - Sent in a library specific order
- Conduct a complete QUIC handshake
- \rightarrow Evaluate the order of parameters
- F Requires a successful handshake

Impl.	Ext. Order	TP Order
LSQUIC	51-43	4-6-7-8-0-f-2
HAProxy	43-51	0-2-f-3-4-6-7-8
mvfst	43-51	0-6-7-4-8-a-3-2-f

How can we Identify QUIC Server Libraries?

We need available and stable features which can not be configured by users.

(i) Transport parameters (TPs)

- QUIC defines a new TLS extension
 - Implemented within the QUIC library
 - Sent in a library specific order
- Conduct a complete QUIC handshake
- \rightarrow Evaluate the order of parameters
- # Requires a successful handshake

(ii) Error messages

- QUIC specifies error codes
 - Can be extended with error messages
 - Messages contain a unique text
- Trigger an error with an *invalid* ALPN value
- \rightarrow Map error messages to individual libraries
 - Inly some libraries send an error message

IIIpi. Ext. Older TP Older	
LSQUIC 51-43 4-6-7-8-0-f-2 HAProxy 43-51 0-2-f-3-4-6-7- mvfst 43-51 0-6-7-4-8-a-3	-8 -2-f

Impl.	Error Message
Quinn	peer doesn't support any known
aioquic	No common ALPN protocols
NGINX	handshake failed

What is the Current State of QUIC Deployments?

 Targets

 2023
 2024

What is the Current State of QUIC Deployments?

	Targets			
	2023 2024			
Addrs.	11.9 M	5.9 M		

 Since November 2024, most Akamai deployments do not respond to ZMap probes

What is the Current State of QUIC Deployments?

	Targets		
	2023 2024		
Addrs. SNI	11.9 M 601.9 k	5.9 M 834.7 k	

- Since November 2024, most Akamai deployments do not respond to ZMap probes
- DNS scans
 - ~700 M domains
 - Single vantage point
 - A/AAAA and HTTPS resource records

• At least one deployment for 18 libraries

- At least one deployment for 18 libraries
- Most common libraries are from:
 - Hyper Giants: Akamai, Google, Cloudflare, Facebook

- At least one deployment for 18 libraries
- Most common libraries are from:
 - Hyper Giants: Akamai, Google, Cloudflare, Facebook
 - Web servers with early QUIC adoption: LiteSpeed, NGINX and Caddy

- At least one deployment for 18 libraries
- Most common libraries are from:
 - Hyper Giants: Akamai, Google, Cloudflare, Facebook
 - · Web servers with early QUIC adoption: LiteSpeed, NGINX and Caddy
- Unknown deployments:
 - Many libraries require an SNI value
 - Some even result in a timeout without any feedback (but a version negotiation)
 - Mostly hyper giants

- At least one deployment for 18 libraries
- Most common libraries are from:
 - Hyper Giants: Akamai, Google, Cloudflare, Facebook
 - · Web servers with early QUIC adoption: LiteSpeed, NGINX and Caddy
- Unknown deployments:
 - Many libraries require an SNI value
 - Some even result in a timeout without any feedback (but a version negotiation)
 - Mostly hyper giants

	2023		2024	
Library	Addresses	ASes	Addresses	ASes
Akamai Q. Google Q. quiche mvfst	7.2 M 327.2 k 122.2 k 72.9 k	814 4736 281 2584	452.7 k 352.4 k 134.8 k 77.3 k	762 4683 269 2622

- The hyper giants:
 - Mostly use the libraries themselves
 - Most deployments are offnets/load balancers
 - Slight increase in deployments
 - Similar configurations, *e.g.*, transport parameters

	2023		2024	
Library	Addresses	ASes	Addresses	ASes
Akamai Q.	7.2 M	814	452.7 k	762
Google Q.	327.2 k	4736	352.4 k	4683
quiche	122.2 k	281	134.8 k	269
mvfst	72.9 k	2584	77.3 k	2622
LSQUIC	486.2 k	2671	646.7 k	2944
NGINX	55.9 k	1070	123.8 k	2264
quic-go	35.3 k	1644	58.2 k	2377

- The hyper giants:
 - Mostly use the libraries themselves
 - Most deployments are offnets/load balancers
 - Slight increase in deployments
 - Similar configurations, *e.g.*, transport parameters
- Web servers
 - Set up by a variety of users
 - A larger increase visible
 - Higher configuration diversity

We want to scale this and allow distributed measurements.

- We will start a project:
 - to add QUIC and H3 to scamper
 - to allow distributed measurements from ARK
- Can we identify more?
- Can we see regional differences?

It's your chance to dump ideas what you want!