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Three observations motivate reevaluating 
how we collect BGP routes
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Observation #1: RIPE RIS and RouteViews lack coverage
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Three observations motivate reevaluating 
how we collect BGP routes
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Observation #1: RIPE RIS and RouteViews lack coverage
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Observation #2: RIPE RIS and RouteViews coverage is flat over time

Three observations motivate reevaluating 
how we collect BGP routes
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Observation #2: RIPE RIS and RouteViews coverage is flat over time

Observation #1: RIPE RIS and RouteViews lack coverage
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Observation #3: Deploying new VPs leads to a unmanageable 
                            number of routes to process

Three observations motivate reevaluating 
how we collect BGP routes



The number of routes collected increases quadratically
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1TB to process 
every day!
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Outline

1. We observe that BGP routes 
are often redundant
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Outline

1. We observe that BGP routes 
are often redundant

2. Redundant BGP routes enable  
an overshoot-and-discard collection scheme
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Large Hadron Collider (LHC) generates billions of collisions

Only 0.0006% of generated collisions 
are actually relevant
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Large Hadron Collider (LHC) generates billions of collisions

Only 0.0006% of generated collisions 
are actually relevant

They rely on custom hardware 
and algorithms to discard 
uninteresting data prior processing



They are using an "overshoot-and-discard" collection strategy
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The “overshoot-and-discard” data collection paradigm 
can be adapted to BGP data collection



Overshoot: We collect data from as many VPs as possible
To prevent missing important information

The “overshoot-and-discard” data collection paradigm 
can be adapted to BGP data collection
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Overshoot: We collect data from as many VPs as possible
To prevent missing important information

Discard: We filter out the redundant BGP routes
To reduce the volume of data collected
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The “overshoot-and-discard” data collection paradigm 
can be adapted to BGP data collection
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Outline

1. We observe that BGP routes 
are often redundant

2. Redundant BGP routes enable  
an overshoot-and-discard collection scheme
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3. GILL: a system that measures redundancy between BGP routes  
and generates filters that discard redundant routes



GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL selects the updates to retain  
using a new metric called the Reconstitution Power (RP)
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GILL builds filters that discriminate 
retained updates from redundant updates
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GILL builds filters that discriminate 
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GILL builds filters that discriminate 
retained updates from redundant updates
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GILL builds filters that discriminate 
retained updates from redundant updates
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GILL builds filters that discriminate 
retained updates from redundant updates
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Outline

1. We observe that BGP routes 
are often redundant

2. Redundant BGP routes enable  
an overshoot-and-discard collection scheme
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3. GILL: a system that measures redundancy between BGP routes  
and generates filters that discard redundant routes

4. GILL’s long-term impact is significant 
for various objectives
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GILL’s long-term impact
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A prototype of GILL is already up and running! 
https://bgproutes.io/
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GILL uses BGP daemons written in C 
and optimized to collect BGP routes
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GILL finds redundant updates and anchors VP
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GILL finds redundant updates and anchors VP
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GILL computes filters, loads them into the BGP deamons 
and discards the filtered routes
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GILL updates filters over time using an out-of-band mirroring scheme
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GILL updates filters over time using an out-of-band mirroring scheme
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Gill finds redundant BGP data 
without optimising a particular objective

74

Key Intuition:  A set of BGP updates is redundant if it can  
probabilistically be reconstituted from another set of updates



Gill finds redundant BGP data 
without optimising a particular objective
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Key Intuition:  A set of BGP updates is redundant if it can  
probabilistically be reconstituted from another set of updates

See our HotNets’23 paper



There is a high level of redundancy in BGP data
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Naive baselines fail to assess redundancy in BGP data 
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