
Task 1.3.2: Software for disclosure controls 
 
The starting effort for this task falls under Task 1.3.2.1: Understand gaps between privacy-
preservation techniques and network and security research needs. 
 
There are several classes of disclosure controls, including differential privacy (DP), secure multi-
party computation (SMPC), homomorphic encryption and synthetic datasets. Our initial focus 
has been DP because we believe that the issues around this method are the more challenging. 
 
During the first year, we have followed two paths to make progress on our understanding of 
DP. The first is to develop a sufficient understanding of the fundamentals behind the variants of 
DP, and the other is to identify existing software packages that we will evaluate in year two of 
the project.  
 
 
Background on DP 
 
From a practical perspective, DP offers great promise and raises great challenges. We do not 
attempt to reproduce here the mathematical foundations of DP, which have been well-
documented elsewhere. DP provides privacy protection by adding noise to the result of a query. 
(There are other modes, but we focus on this one, which involved a trusted curator that has 
access to the raw data and assigns the necessary amount of noise to the query result.) DP 
provides a mathematical link between the amount of noise added and a parameter ε, which 
abstractly characterizes the privacy loss from releasing the results of a query to the public.  
 
However, there are four fundamental problems that we will encounter in applying DP to a 
problem: 
 

1. The difficulty of setting ε, the privacy loss parameter. 
2. The difficulty of disentangling all that we wish to learn about the dataset into a set of 

suitable queries. If we can pose queries that draw on distinct subpopulations of the 
data, the total privacy loss will be lower.  

3. The difficulty of identifying the so-called sensitivity of the queries, which differential 
privacy defines as the contribution of one person’s data to a given query, rather than 
the contribution of a measurement of one person’s data to the database.  

4. The relative immaturity in the DP literature in working with certain kinds of data, such 
as time-series data. 

 
A principal challenge when using DP is that the literature provides minimal guidelines for how 
to translate the value of ε into a measure of potential harm from loss of privacy that a policy-
maker can use in any practical way. The literature on DP states that setting ε is a matter of 
policy, but offers no help as to how to set it. Most papers on DP present results with a range of 
values for ε, leaving the decision of what value ε should have in practice to the policymaker. 
This is, after all, one of the core innovations of DP: it leaves the decision of privacy protection to 



the policymaker, rather than to technologies. But the decision still needs to be made if data are 
to be released. 
 
Because noise is added to the result of a query, the designer of the query must assess whether 
the returned values have enough precision—if they are a sufficiently close approximation to the 
actual value—that the result is actually useful in answering the question of interest. If ε=0, 
there is perfect privacy, but essentially infinite noise has been added to the result, so it is 
useless. As ε increases, the abstract privacy loss increases, as does the utility of the data. In 
practice, in order to achieve sufficient utility, the values of ε for actual working systems have 
been far higher than those that were anticipated by DP’s inventors or by many members of the 
DP research community. 
 
To better understand DP in practical terms, we implemented one of the commonly used DP 
algorithms for adding noise to a query result, the Laplace noise distribution. We plotted the 
actual noise plots for the simplest typical DP query, which is a count query: in a given set of 
records, how many of them match some selection criterion? We will use this implementation in 
the DP tutorial that will be part of our final deliverables for this project. 
 
The foundational assumption of DP is that the adversary attempting to undo the protection has 
access to an arbitrary amount of external data. For a count query, the worst-case assumption is 
that the adversary knows, for all records in the data but one, whether they match the criterion. 
The records for which the adversary knows the answer can be ignored in deciding how much 
noise to add. There is only one record of interest, so removing the other records from the 
returned value, the answer will either be 0 or 1. DP requires us to add enough noise so that the 
adversary cannot be sure which the true answer is.  
 
Figure 1 plots the actual distribution of noise that DP would add to the result of the count 
query, for different values of ε. 
 

Figure 1: The actual distribution of the noise function, using the Laplace noise function 
commonly used in DP. For ε = .1, the returned answer might differ from the true value over a 
range of more than +/- 5. As we increase ε, the overlap between the curves decreases.  
 
For this specific query, we can compute the probability that the returned value is the true 
value, by looking at areas under the curve. The result are as follows:  
 



ε Probability of returning 
the true value 

.1 .52 (essentially random) 

.5 .61 
1 .7 
5 .96 

 
If the adversary knows ε (which is typically published with the data), for ε < 1 the odds of 
guessing correctly are low enough that the adversary would probably not guess. There is 
substantial privacy protection in these cases. By the time ε is 5 for this single query, the odds of 
guessing right are high enough that the adversary would probably try to exploit the result, with 
a resulting loss of privacy.  
 
This example shows how noise can be mapped to a probability of privacy loss that could make 
sense to a policy-maker, but the challenge is that the value of ε as an intermediate step in 
deriving that understanding is not helpful. Further, the relationship between ε and some 
practical measure of potential harm is going to be different for each sort of query.  
 
The plots also allow us to estimate the utility of the different values of ε. The impact of the 
noise on the result depends on the total number of values in the database. If there were 10 
records, the noise for ε=.1, which might well be +/-5, would render the result essentially 
useless. But if there were 10,000 records in the database, getting an answer that might be off 
by as much as 5 would still be a small level of uncertainty. An important intuition about DP is 
that the amount of noise that has to be added is (in a simple version) independent of the 
number of records in the underlying database, but the utility does depend on that number.  
 
The worst-case assumption about the external knowledge of the adversary will often be 
unrealistic. In practice, researchers may be able to formulate a more realistic model of what the 
adversary might know, but the challenge then is that there is no general way to incorporate 
that model into the mathematical formulations of DP. The actual potential for harm gets even 
further disconnected from the value of ε.  
 
While this assessment of DP may seem somewhat pessimistic, we find several important 
insights in the DP approach.  

• Adding noise (by whatever means the amount is computed) is a theoretically sound 
approach to privacy protection. 

• Other forms of privacy protection such as k-anonymity can suffer low probability events 
that cause massive losses of privacy. If noise infusion is incorporated into these other 
schemes, the harm from these events can be reduced.  

• While there are software packages that provide basic DP primitives in the context of a 
database query system, for best result it may be necessary to design a bespoke DP 
system for a given application, taking into account the specifics of the data and the 
nature of the desired query. This reality raises the barrier to adoption. It is necessary to 



think of DP both as a software package and as a foundational concept that can underlie 
many embodiments.  

• Combinations of noise, clustering, and aggregation may provide good protection and 
high utility. That is, it may be necessary to adopt a system that is “inspired” by DP or 
that has elements of DP, but incorporates traditional privacy protection approaches that 
lack the mathematical rigor of DP. Such a scheme will almost certainly have to be 
designed from scratch, which will both increase development costs and will cause 
concern among DP researchers and advocates, necessitating the need for independent 
review.  

• Any query based on confidential data that is released will cause some loss of privacy and 
a resultant privacy risk.  DP provides a structured way to think about this risk, even if the 
concept of ε is hard to translate into practical measures of loss, but DP does not create   
risk-free data for release. There is always risk. 
 
 

 
Software for DP.  
We have identified three open-source software packages that implement the basic DP 
primitives: εktelo1[1], OpenDP (from Harvard)2 and a package from Google3.  In the next year, 
we will explore the utility of these packages for protecting various sorts of network data, and 
provide a tutorial on their use. In particular, we will try to reproduce some of the queries that 
are documented in [2], which describes the use of the PINQ DP system to make queries across 
network traces (see the discussion of Task 1.2.4.1). While the PINQ system has not been 
supported for some time, the various query strategies described there should be 
implementable in the software packages we found that are currently supported.  

 
1 https://ektelo.github.io 
2 https://privacytools.seas.harvard.edu/opendp 
3 https://github.com/google/differential-privacy 
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