Active measurements needs

During the week of May 1-5, CAIDA hosted an in-person workshop at
SDSC, where we discussed active measurement needs of the community as
we planned for the future of Ark and measurement infrastructure in

general. The feedback that we received was wide and varied; we

discussed raw measurement primitives and capabilities desired by the
community, and technical solutions that we could pursue that would

support the community.

We asked participants to describe the raw measurement primitives that
we should strive to support from active VPs. These include:

(Figure 1: Candidate list of raw measurement primitives)

.HTTP

DNS

. custom TCP packets

. sourcing of packets with spoofed addresses

. BGP announcements

. topology measurements (ping, traceroute, alias resolution)
. TLS handshakes and STARTTLS

. packet capture of unsolicited traffic received by the VP

9. bandwidth measurements

10. zgrab-style banner grabs

11. arbitrary forwarding of packets delivered to the VP by a service

o N A WN

These raw measurement primitives provide researchers the building
blocks to build more complex measurements, such as DNS queries that
obtain sets of authoritative nameservers in the resolution path of a
domain name that could then be followed with ping and traceroute
measurements to identify how close those nameservers are to the
resolver, and the path that the resolver takes to the nameserver.

These raw measurements overlap; a user could construct their own
TCP-based traceroute with custom TCP packets, for example. However,
our job is to support the types of measurements that researchers
typically use, and provide a degree of flexibility in how the

researcher obtains active measurements that answer their questions.



Current capabilities

Currently, Ark regularly conducts ping, traceroute, and alias

resolution measurements, and has supported occasional research by the
community that required HTTP, DNS, custom TCP packets, or bandwidth
measurement, as well as a prototype service (PacketLab) that supports
arbitrary forwarding of packets delivered to the VP by an external
measurement service.

Currently, Atlas supports regular ping, traceroute, DNS queries, NTP,

and geolocation through ping measurements. Periscope supports ping

and traceroute measurements from (a dwindling list of) public looking
glasses. EdgeNet supports arbitrary measurements within containers
provided by researchers, and conducts their own ongoing Internet-scale
topology measurements. Finally, M-Lab supports bandwidth measurements
(NDT), topology measurements towards systems that contact M-Lab
servers, and supports community projects (reverse traceroute, and

WeHe) by providing server infrastructure for those projects.

Participants expressed concerns about possibilities that some of
the new list of primitives could be misused in a way that causes harm
to VP hosting providers or measurement targets.

For example, a host in a country that censors HTTP, DNS, or TLS could
be harmed by measurement traffic that contains keywords that trigger
the censor. Similarly, spoofed packets can be used both to test

source address validation (SAV) deployment, and for denial of service
attacks. To support the candidate list of raw primitives above, we

need to revisit the Ark memorandum of cooperation with site hosts, and
implement mechanisms to prevent or limit measurements that could be
problematic for the site host, and allow site hosts to opt-out of
measurements that they do not want to support.

Spectrum of Solutions

In terms of technical solutions that we could pursue, participants
recognized that the approaches we could consider exist on a continuum
(from least to most restrictive):

- Full shell access on the probe

- run measurement code in a container on the probe

- Domain specific language (DSL) to run tests, send packets, do logic



- VPN access to send packets from probe, do logic elsewhere / no logic
- API to run tests, send packets, do logic elsewhere / no logic
- No access, just use provided data

Current data access capabilities

Currently, Ark provides full shell access on the probe to vetted
researchers, and an API (Vela) to vetted researchers to run selected
measurements. We also provide researchers restricted access

to data resulting from CAIDA's own measurement campaigns that
use Ark, under acceptable use policies (AUPs) to protect and
sustain the infrastructure. Data older than one year is available

to the pubilic.

Atlas provides an API to run tests, and has a minamalist AUP that
requires a user to have Atlas credits to schedule a measurement. This
minimalist AUP is is appropriate because the types of measurements
that an Atlas VP can conduct has been limited by RIPE NCC to
traceroute, ping, DNS, and NTP. Atlas provides public access to the
data that Atlas VPs have collected.

Finally, EdgeNet provides the ability for vetted researchers to upload
containers that can contain measurement experiments, as well as access
to data that EdgeNet experimenters make available. EdgeNet's AUP
requires end-users to consider if a network administrator at the
end-user's institution would allow the experiment if it occurred at

their institution. Beyond this, EdgeNet operates using a high-trust

model; they vet the academic supervising an end-user, and rely on the
academic to ensure the supervised end-user behaves reasonably.

Participants were particularly excited in further development of two

of these aspects: "run measurement code in a container on the probe"
and "Domain specific language (DSL) to run tests, send packets, do
logic".

Design and prototype plans for container approach

For the container approach, we plan to prototype an approach

that uses containers and key features provided by Linux: IP tables,
network namespaces, and control groups (cgroups). We hypothesize that
these features will allow us to restrict measurement code in a



container from exhausting available resources on the node, and enforce
simple requirements that a site host prescribes, such as which

protocols they allow and how much bandwidth they are prepared for the
measurements to consume. This approach fits the desires of many
researchers: the ability to develop and test their measurement code on
their own systems, and then run that code on third-party platforms

once they believe the code is ready. The challenge remains that a
container approach does not necessarily prevent measurement activities
that the host might not support, such as DNS or HTTP measurements
for websites that might be censored by their country.

On the positive side, a container appraoch would allow any programming
language installed on the measurement platform to be used to perform
measurements, allowing researchers to use the language they are most
familiar/comfortable with. The language can be used to its fullest

extent, e.g. libraries, flow control structures, and provides

researchers the ability to use existing protocols in any way, or add

new protocols as desired (limited by site restrictions).

However, a container approach would require more programming,
networking, and operating system knowledge from researchers in order
to perform measurements, as lower level abstractions can make
programming more complicated. As platform operators, we would become
heavily reliant on the container environment and the operating system
providing effective ways to restrict behaviour, e.g. sending certain

types of packets, packet rates, reading/writing files on local disk,

or exhausting CPU time. As a platform operator, we would also need to
understand and cover everything that might be a security issue, as the
containers could do anything allowed by the environment that we
configure. Further, operating system updates may change or break the
mechanisms we use to restrict measurements.

Design and prototype plans for domain-specific approach

We discussed the domain-specific language approach as well; game
engines often provide a Lua-based interface that allows players to
create custom extensions that use existing functionality in the game
engine to enhance the game player's experience. For Internet
measurement, one possible design would provide an interface that
allows researchers to place logic on the VPs to extend a deployed
measurement engine to allow for measurement logic to react to
measurement results as the node collects them. Participants described
two motivating examples from the DNS space: monitoring when DNS



operators deploy a new zone file via fine-grained monitoring of SOA
records contained in the zone file, and monitoring of authoritative
resolvers for domains under attack. The APIls exposed by Atlas hamper
these measurements, as the API does not allow measurements to quickly
react to results as VPs collect data. We plan to prototype a

python-based DSL that provides a convenient interface to scamper

(Ark's measurement engine) processes on Ark nodes.

Our immediate goal with a DSL is to provide a convenient interface for
DNS and ping measurements; participants at the workshop described
their challenge in quickly obtaining and measuring the resolution path
for a given domain name. We plan to add DSL support for other
measurement primatives once we have prototyped the infrastructure to
support this initial use case.

On the positive side, a DSL can provide high level abstractions for
common networking tasks that could otherwise consist of multiple
complicated steps, e.g. traceroute. A DSL is easier for
non-programmers to write useful measurement programs, with less
knowledge of things like socket APIs. Further, the implementation of
measurement primitives is likely better than the average roll-your-own
version, and it is harder to do "bad" things if the language doesn't
provide a way to do them, e.g. send certain types of packets, too many
packets, read or write to files on the local disk, exhaust CPU time.

However, a DSL must be still be learned by a user before they can
effectively use it. Even if it is based on top of an existing language
(e.g., Lua, Python, Perl) there will be new domain specific parts.

The limited scope or cut down nature of the DSL might make it
difficult to perform some tasks that could be done easily in a general
purpose language, e.qg. if the DSL restricts looping constructs.
Researchers are reliant on DSL maintainers exposing useful measurement
primitives, and the ways the DSL allows them to be used/configured,
e.g. setting fields in headers, sending certain types of packets.
Researchers are reliant on the maintainers of the DSL keeping it up to
date, e.g. to work on modern systems, add new protocols.

Monitor specification report.

Our current Ark infrastructure has taught us valuable lessons about
how we should provision hardware and software. Key lessons include:



1) select a single operating system that allows for scalable
system administration.
2) use the capabilities of the node to prevent premature wear.

For the current Ark system, now over 10 years old, we manage a collection

of Raspberry Pi devices running Raspbian (primarily versions 10 and 11

on Raspberry Pi 2 and 3 devices) and 1U rackmount devices running FreeBSD
10.3 for the i386 architecture. Software installation and maintenance

is currently primarily a manual job: if we wish to deploy or update

software, we have to push the software out to the VP. Itis extremely
challenging to maintain this platform because we have to revisit which

VPs have what software, as we can only push software to VPs that are up

and reachable; not all VPs are up and reachable at any one time.

Further, the FreeBSD 10.3 nodes are nearly end-of-life: i386 has
become a tier-2 platform since FreeBSD 13. We are therefore planning
to settle on debian-based (i.e., debian, raspbian, and ubuntu) OSes
going forward -- both with physical node deployments and future
containerized deployments that we have planned.

Key towards future scalable maintenance is to work toward a

pull-based model, where we publish packages that contain measurement
software, and the vantage points self-update their own packages when
they are operational without system administrator intervention. We

have settled on debian-based systems because we can publish debian
packages for them. Further, these packages can serve as input for
future docker containers, allowing volunteers to provision Ark nodes

in interesting networks, including U.S. R&E networks.

Finally, we have learned that we need to minimize write activity to SD
cards, which can fail because each write incurs wear on the card,
significantly shortening the lifetime of otherwise usable vantage

point hardware. To minimize SD card wear, we have provisioned and
deployed test VPs with (128MB) /ramdisk partition to store in-progress
team-probing traceroute data. This ramdisk size is appropriate for

the Raspberry Pi VPs that have 512MB of RAM, as it still allows 384MB
of RAM to run other software on the VPs, but is a constraint for

activities other than team probing. For example, our current IPv4
prefix-probing measurements require up to 200MB of storage (more than
the available space on the ramdisk), and our team-probing measurements
require up to 105MB of storage (nearly all of the space on the

ramdisk), requiring us to continue to use SD card storage for these
activities. Further, we wish to be able to support the on-VP storage
needs of third-party researchers without wearing out deployed SD



cards. Therefore, we plan to deploy nodes with a minimum of 4GB of
RAM in the future. Doing so will allow us to provision significantly
larger ramdisks (approx 2GB).



